Part Number Hot Search : 
DB104G 61401 2030C AD8672AR 1213T T2D33 HC244ADW BZX84C
Product Description
Full Text Search
 

To Download M27C512-45XF6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M27C512
512 Kbit (64K x8) UV EPROM and OTP EPROM
Features

5V 10% supply voltage in read operation Access time: 45 ns Low power "CMOS" consumption: - Active current 30 mA - Standby current 100 A Programming voltage: 12.75 V 0.25 V Programming time around 6 s. Electronic Signature - Manufacturer code: 20h - Device code: 3Dh Packages - ECOPACK(R) versions
28
28

1
FDIP28W (F)
1
PDIP28 (B)
PLCC32 (C)
Table 1.
Package
PDIP28 PLCC32
Device summary
45 ns 70 ns 90 ns
M27C512-90B6 M27C512-70C6 M27C512-90C1 M27C51210C6 M27C51210F1 M27C51212C3 M27C51212F1 M27C51212F3 M27C512-15F1 M27C512-15F6
100 ns
120 ns
150 ns
FDIP28W
M27C512-45XF1
M27C512-70XF1
M27C512-90F1 M27C512-90F6
May 2007
Rev 3
1/22
www.st.com 1
Contents
M27C512
Contents
1 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Two line output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 System considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PRESTO IIB programming algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 4 5 6 7 8
Erasure operation (applies for UV EPROM) . . . . . . . . . . . . . . . . . . . . . . 9 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/22
M27C512
Description
1
Description
The M27C512 is a 512 Kbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for applications where fast turn-around and pattern experimentation are important requirements and is organized as 65536 by 8 bits. The FDIP28W (window ceramic frit-seal package) has transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure. For applications where the content is programmed only one time and erasure is not required, the M27C512 is offered in FDIP28W, PDIP28, and PLCC32 packages. In order to meet environmental requirements, ST offers the M27C512 in ECOPACK(R) packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 1. Logic diagram
VCC
16 A0-A15
8 Q0-Q7
E GVPP
M27C512
VSS
AI00761B
Table 2.
Signal names
Name Description Address Inputs Data outputs Chip Enable Output Enable / Program Supply Supply Voltage Ground Not Connected Internally Don't Use Direction Inputs Outputs Input Input Supply Supply -
A0-A15 Q0-Q7 E GVPP VCC VSS NC DU
3/22
Description Figure 2. DIP connections
A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 Q0 Q1 Q2 VSS 1 28 2 27 3 26 4 25 5 24 6 23 7 22 M27C512 8 21 9 20 10 19 11 18 12 17 13 16 14 15
AI00762
M27C512
VCC A14 A13 A8 A9 A11 GVPP A10 E Q7 Q6 Q5 Q4 Q3
Figure 3.
LCC connections
A7 A12 A15 DU VCC A14 A13 1 32 A6 A5 A4 A3 A2 A1 A0 NC Q0 A8 A9 A11 NC GVPP A10 E Q7 Q6 9 M27C512 25 17 Q1 Q2 VSS DU Q3 Q4 Q5
AI00763
4/22
M27C512
Device operation
2
Device operation
The modes of operations of the M27C512 are listed in the Operating Modes table. A single power supply is required in the read mode. All inputs are TTL levels except for GVPP and 12V on A9 for Electronic Signature.
2.1
Read mode
The M27C512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (E) is the power control and should be used for device selection. Output Enable (G) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time (tAVQV) is equal to the delay from E to output (tELQV). Data is available at the output after a delay of tGLQV from the falling edge of G, assuming that E has been low and the addresses have been stable for at least tAVQV-tGLQV.
2.2
Standby mode
The M27C512 has a standby mode which reduces the active current from 30mA to 100A The M27C512 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the GVPP input. Table 3. Operating modes(1)
Mode Read Output Disable Program Program Inhibit Standby Electronic Signature
1.
E VIL VIL VIL Pulse VIH VIH VIL
GVPP VIL VIH VPP VPP X VIL
A9 X X X X X VID
Q7-Q0 Data Out Hi-Z Data In Hi-Z Hi-Z Codes
X = VIH or VIL, VID = 12V 0.5V. Electronic Signature
A0 VIL VIH Q7 0 0 Q6 0 0 Q5 1 1 Q4 0 1 Q3 0 1 Q2 0 1 Q1 0 0 Q0 0 1 Hex Data 20h 3Dh
Table 4.
Identifier Manufacturer's Code Device Code
5/22
Device operation
M27C512
2.3
Two line output control
Because EPROMs are usually used in larger memory arrays, the product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

The lowest possible memory power dissipation, Complete assurance that output bus contention will not occur.
For the most efficient use of these two control lines, E should be decoded and used as the primary device selecting function, while G should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.
2.4
System considerations
The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, ICC, has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1F ceramic capacitor be used on every device between VCC and VSS. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7F bulk electrolytic capacitor should be used between VCC and VSS for every eight devices. The bulk capacitor should be located near the power supply connection point.The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.
6/22
M27C512 Figure 4. Programming flowchart
VCC = 6.25V, VPP = 12.75V SET MARGIN MODE
Device operation
n=0
E = 100s Pulse NO ++n = 25 YES NO VERIFY YES Last Addr NO ++ Addr
FAIL
YES RESET MARGIN MODE CHECK ALL BYTES 1st: VCC = 6V 2nd: VCC = 4.2V
AI00738B
2.5
Programming
When delivered (and after each erasure for UV EPROM), all bits of the M27C512 are in the '1' state. Data is introduced by selectively programming '0's into the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27C512 is in the programming mode when VPP input is at 12.75V and E is pulsed to VIL. The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. VCC is specified to be 6.25V 0.25V. The M27C512 can use PRESTO IIB Programming Algorithm that drastically reduces the programming time (typically less than 6 seconds). Nevertheless to achieve compatibility with all programming equipments, PRESTO Programming Algorithm can be used as well.
2.6
PRESTO IIB programming algorithm
PRESTO IIB Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of 6.5 seconds. This can be achieved with STMicroelectronics M27C512 due to several design innovations described in the M27C512 datasheet to improve programming efficiency and to provide adequate margin for reliability. Before starting the programming the internal MARGIN MODE circuit is set in order to guarantee that each cell is programmed with enough margin. Then a sequence of 100s program pulses are applied to each byte until a correct verify occurs. No overprogram pulses are applied since the verify in MARGIN MODE provides the necessary margin.
7/22
Device operation
M27C512
2.7
Program Inhibit
Programming of multiple M27C512s in parallel with different data is also easily accomplished. Except for E, all like inputs including GVPP of the parallel M27C512 may be common. A TTL low level pulse applied to a M27C512's E input, with VPP at 12.75V, will program that M27C512. A high level E input inhibits the other M27C512s from being programmed.
2.8
Program Verify
A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with G at VIL. Data should be verified with tELQV after the falling edge of E.
2.9
Electronic Signature
The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25C 5C ambient temperature range that is required when programming the M27C512. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27C512. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during Electronic Signature mode. Byte 0 (A0 = VIL) represents the manufacturer code and byte 1 (A0 = VIH) the device identifier code. For the STMicroelectronics M27C512, these two identifier bytes are given in Table 4. and can be read-out on outputs Q7 to Q0.
8/22
M27C512
Erasure operation (applies for UV EPROM)
3
Erasure operation (applies for UV EPROM)
The erasure characteristics of the M27C512 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 A. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 A range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27C512 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27C512 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27C512 window to prevent unintentional erasure. The recommended erasure procedure for the M27C512 is exposure to short wave ultraviolet light which has wavelength 2537 A. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 15 W-sec/cm2. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 W/cm2 power rating. The M27C512 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.
9/22
Maximum rating
M27C512
4
Maximum rating
Stressing the device outside the ratings listed in Table 5. may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the Operating sections of this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 5.
Symbol TA TBIAS TSTG TLEAD VIO
(2)
Absolute maximum ratings
Parameter Ambient Operating Temperature(1) Value -40 to 125 -50 to 125 -65 to 150 (note 1) -2 to 7 -2 to 7 -2 to 13.5 -2 to 14 Unit C C C C V V V V
Temperature Under Bias Storage Temperature Lead Temperature during Soldering Input or Output Voltage (except A9) Supply Voltage A9 Voltage Program Supply Voltage
VCC VA9(2) VPP
1. Depends on range. 2. Minimum DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns.
10/22
M27C512
DC and AC parameters
5
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 6. AC measurement conditions
High Speed Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages 10ns 0 to 3V 1.5V Standard 20ns 0.4V to 2.4V 0.8V and 2V
Figure 5.
Testing input/output waveform
High Speed 3V 1.5V 0V
Standard 2.4V 2.0V 0.8V
AI01822
0.4V
Figure 6.
AC Testing Load Circuit
1.3V
1N914
3.3k DEVICE UNDER TEST CL
OUT
CL = 30pF for High Speed CL = 100pF for Standard CL includes JIG capacitance
AI01823B
11/22
DC and AC parameters Table 7.
Symbol CIN COUT
M27C512
Capacitance
Parameter Input Capacitance Output Capacitance Test Condition(1)(2) VIN = 0V VOUT = 0V Min Max 6 12 Unit pF pF
1. TA = 25C, f = 1MHz 2. Sampled only, not 100% tested.
Table 8.
Symbol ILI ILO ICC ICC1 ICC2 IPP VIL VIH(2) VOL VOH
Read mode DC characteristics
Parameter Input Leakage Current Output Leakage Current Supply Current Supply Current (Standby) TTL Supply Current (Standby) CMOS Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL Output High Voltage CMOS IOL = 2.1mA IOH = -1mA IOH = -100A 3.6 VCC - 0.7V Test Condition(1) 0V VIN VCC 0V VOUT VCC E = VIL, G = VIL, IOUT = 0mA, f = 5MHz E = VIH E > VCC - 0.2V VPP = VCC -0.3 2 Min Max 10 10 30 1 100 10 0.8 VCC + 1 0.4 Unit A A mA mA A A V V V V V
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Maximum DC voltage on Output is VCC +0.5V.
12/22
M27C512 Table 9. Read mode AC characteristics
DC and AC parameters
M27C512 Symbol Alt Parameter Test Condition(1) -45(2) Min tAVQV tELQV tGLQV tEHQZ(3) tGHQZ(3) tAXQX tACC tCE tOE tDF tDF tOH Address Valid to Output Valid Chip Enable Low to Output Valid Output Enable Low to Output Valid Chip Enable High to Output Hi-Z Output Enable High to Output Hi-Z Address Transition to Output Transition E = VIL, G = VIL G = VIL E = VIL G = VIL E = VIL E = VIL, G = VIL 0 0 0 Max 45 45 25 25 25 0 0 0 Min -70 Max 70 70 35 30 30 ns ns ns ns ns ns Unit
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Speed obtained with High Speed AC measurement conditions. 3. Sampled only, not 100% tested.
Table 10.
Read mode AC characteristics
M27C512
Symbol
Alt
Parameter
Test Condition(1)
-90
-10
-12
-15
Unit
Min Max Min Max Min Max Min Max tAVQV tELQV tGLQV tEHQZ (2) tGHQZ(2) tACC tCE tOE tDF Address Valid to Output Valid Chip Enable Low to Output Valid Output Enable Low to Output Valid Chip Enable High to Output Hi-Z Output Enable High to Output HiZ Address Transition to Output Transition E = VIL, G = VIL G = VIL E = VIL G = VIL 0 90 90 40 30 0 100 100 40 30 0 120 120 50 40 0 150 150 60 50 ns ns ns ns
tDF
E = VIL
0
30
0
30
0
40
0
50
ns
tAXQX
tOH
E = VIL, G = VIL
0
0
0
0
ns
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Sampled only, not 100% tested.
13/22
DC and AC parameters Figure 7. Read mode AC waveforms
M27C512
A0-A15
VALID tAVQV tAXQX
VALID
E tGLQV G tELQV Q0-Q7 tGHQZ Hi-Z tEHQZ
AI00735B
Table 11.
Symbol ILI ICC IPP VIL VIH VOL VOH VID
Programming mode DC characteristics
Parameter Input Leakage Current Supply Current Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL A9 Voltage IOL = 2.1mA IOH = -1mA 3.6 11.5 12.5 E = VIL -0.3 2 Test Condition(1)(2) VIL VIN VIH Min Max 10 50 50 0.8 VCC + 0.5 0.4 Unit A mA mA V V V V V
1. TA = 25 C; VCC = 6.25V 0.25V; VPP = 12.75V 0.25V 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
Table 12.
Symbol tA9HVPH tVPHEL tA10HEH tA10LEH tEXA10X tEXVPX tVPXA9X
Margin Mode AC Characteristics
Alt tAS9 tVPS tAS10 tAS10 tAH10 tVPH tAH9 Parameter VA9 High to VPP High VPP High to Chip Enable Low VA10 High to Chip Enable High (Set) VA10 Low to Chip Enable High (Reset) Chip Enable Transition to VA10 Transition Chip Enable Transition to VPP Transition VPP Transition to VA9 Transition Test Condition(1)(2) Min 2 2 1 1 1 2 2 Max Unit s s s s s s s
1. TA = 25 C; VCC = 6.25V 0.25V; VPP = 12.75V 0.25V 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
14/22
M27C512 Figure 8. Margin mode AC waveforms
VCC
DC and AC parameters
A8
A9 tA9HVPH GVPP tVPHEL E tA10HEH A10 Set tEXA10X tEXVPX tVPXA9X
A10 Reset tA10LEH
AI00736B
1. A8 High level = 5V; A9 High level = 12V.
15/22
DC and AC parameters Table 13.
Symbol tAVEL tQVEL tVCHEL tVPHEL tVPLVPH tELEH tEHQX tEHVPX tVPLEL tELQV tEHQZ(3) tEHAX
M27C512
Programming mode AC characteristics
Alt tAS tDS tVCS tOES tPRT tPW tDH tOEH tVR tDV tDFP tAH Parameter Address Valid to Chip Enable Low Input Valid to Chip Enable Low VCC High to Chip Enable Low VPP High to Chip Enable Low VPP Rise Time Chip Enable Program Pulse Width (Initial) Chip Enable High to Input Transition Chip Enable High to VPP Transition VPP Low to Chip Enable Low Chip Enable Low to Output Valid Chip Enable High to Output Hi-Z Chip Enable High to Address Transition 0 0 Test Condition(1)(2) Min 2 2 2 2 50 95 2 2 2 1 130 105 Max Unit s s s s ns s s s s s ns ns
1. TA = 25 C; VCC = 6.25V 0.25V; VPP = 12.75V 0.25V 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 3. Sampled only, not 100% tested.
Figure 9.
A0-A15
Programming and Verify modes AC waveforms
VALID tAVEL tEHAX DATA IN tQVEL tEHQX tELQV tVCHEL tEHVPX DATA OUT tEHQZ
Q0-Q7
VCC
GVPP tVPHEL E tELEH PROGRAM VERIFY
AI00737
tVPLEL
16/22
M27C512
Package mechanical
6
Package mechanical
Figure 10. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline
A2 A3 A1 B1 B D2 D S
N 1 FDIPW-a
A L eA eB C
e
E1
E
1. Drawing is not to scale.
Table 14.
Symbol
FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data
millimeters Typ Min Max 5.72 0.51 3.91 3.89 0.41 1.45 - 0.23 36.50 33.02 15.24 - - 13.06 2.54 14.99 - - 16.18 3.18 1.52 7.11 - 4 28 1.40 4.57 4.50 0.56 - 0.30 37.34 - - 13.36 - - 18.03 4.10 2.49 - 11 0.280 0.100 0.590 1.300 0.600 0.057 0.020 0.154 0.153 0.016 - 0.009 1.437 - - 0.514 - - 0.637 0.125 0.060 - 4 28 Typ inches Min Max 0.225 0.055 0.180 0.177 0.022 - 0.012 1.470 - - 0.526 - - 0.710 0.161 0.098 - 11
A A1 A2 A3 B B1 C D D2 E E1 e eA eB L S N
17/22
Package mechanical Figure 11. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline
A2 A1 B1 B D2 D S
N
M27C512
A L eA eB C
e1
E1
1
E
PDIP
1. Drawing is not to scale.
Table 15.
Symbol
PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data
millimeters Typ Min Max Typ 0.1750 0.0248 3.050 4.570 0.1500 0.0177 0.0500 0.230 36.830 33.020 15.240 13.720 2.540 15.000 12.700 - 14.800 15.200 3.300 1.78 0 28 2.08 10 14.480 - 15.200 16.680 0.1299 0.070 0 28 0.082 10 36.580 - 0.310 37.080 - 1.4500 1.3000 0.6000 0.5402 0.1000 0.5906 0.5000 - 0.5827 0.5984 0.5701 - 0.5984 0.6567 0.0091 1.4402 - 0.0122 1.4598 - 0.1201 0.1799 inches Min Max
A A1 A2 B B1 C D D2 E E1 e1 eA eB L S N
4.445 0.630 3.810 0.450 1.270
18/22
M27C512 Figure 12. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline
D D1
1N
Package mechanical
A1 A2
B1 E2 E3 E1 E e F 0.51 (.020) 1.14 (.045) D3 R CP A E2 B
D2
D2
PLCC-A
1. Drawing is not to scale.
Table 16.
Symbol
PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data
millimeters Typ Min 3.18 1.53 0.38 0.33 0.66 Max 3.56 2.41 - 0.53 0.81 0.10 12.32 11.35 4.78 7.62 - 14.86 13.89 6.05 10.16 1.27 - - 0.00 0.89 - 32 12.57 11.51 5.66 - 15.11 14.05 6.93 - - 0.13 - 0.035 0.400 0.050 0.300 0.485 0.447 0.188 - 0.585 0.547 0.238 - - 0.000 - 32 Typ inches Min 0.125 0.060 0.015 0.013 0.026 Max 0.140 0.095 - 0.021 0.032 0.004 0.495 0.453 0.223 - 0.595 0.553 0.273 - - 0.005 -
A A1 A2 B B1 CP D D1 D2 D3 E E1 E2 E3 e F R N
19/22
Part numbering
M27C512
7
Part numbering
Table 17.
Example: Device Type M27 Supply Voltage C = 5V Device Function 512 = 512 Kbit (64Kb x8) Speed -45 = 45 ns(1) -70 = 70 ns -90 = 90 ns -10 = 100 ns -12 = 120 ns -15 = 150 ns VCC Tolerance blank = 10% X = 5% Package F = FDIP28W B = PDIP28 C = PLCC32 Temperature Range 1 = 0 to 70 C 3 = -40 to 125 C 6 = -40 to 85 C
Ordering Information Scheme
M27C512 -70 XC1
1. High Speed, see AC Characteristics section for further information.
For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST Sales Office.
20/22
M27C512
Revision history
8
Revision history
Table 18.
Date November 1998 25-Sep-2000 02-Apr-2001 29-Aug-2002 08-Nov-2004
Document revision history
Revision 1.0 1.1 1.2 1.3 2.0 First Issue AN620 Reference removed FDIP28W mechanical dimensions changed (Table 14.) Package mechanical data clarified for PDIP28 (Table 15), PLCC32 (Table 16, Figure 12) and TSOP28 (Table 16., Figure 7.) Details of ECOPACK lead-free package options added. Additional Burn-in option removed ECOPACK lead-free text updated in Section 1: Description. TLEAD and Note 1 removed from Table 5: Absolute maximum ratings. TSOP28 package removed. 60, 80, 200 and 250 access times removed from the whole document. Blank, TR, E, and F Options removed from Table 17: Ordering Information Scheme. Changes
18-May-2007
3
21/22
M27C512
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
22/22


▲Up To Search▲   

 
Price & Availability of M27C512-45XF6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X